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Abstract 

We have carried out computer simulations of the statics 

and dynamics of an isolated model polymer chain with excluded 

volume in a solvent acting as a heat bath. We.find that the 

disbri~tion function for the separation of a pair of beads scales 

as the number of beads N to the power v and that edge effects are 

smalle The dynamical correlation functions, such as that of the 

2V+l end-to-end vector, scale as N with v ~ 0.6. The results of a 

dynamical lattice polymer model are shown to be consistent with the 

present results if one adjusts the time scales in such a way 

that the center of mass diffuses at the same rate in the two 

models. The relaxation of the.stress tensor, is shown to be 

quite similar to that of the Rouse model. Finally, it is shown 

that edge effects are much more pronounced in the diffusive 

motion of the individual beads, there being a skin comprising 

about 30% of the total polyme where bead motion is relatively 

quicker. 



1. Introduction 

When a solution of macromolecules is sufficiently dilute 

the interactions between polymer chains can be neglected. 1 ' 2 

A good model for this system then consists of one chain in a 

sea solvent. We describe here some equilibrium and kinetic 

properties obtained by numerically simulating the dynamical 

evolution of such chains. A preliminary account of this work 

appeared earlier. 3 

·Computer calculations, and in particular Monte Carlo methods, 

have been used previously to find the equilibrium properties of 

a single chain, especially for lattice models. Our results are 

in agreement with other calculations in showing that when there 

are excluded volume interactions between elements of the chain, 

v then the size of the chain grows as N , where N is the number 

of beads and v ~ 0. 6. This agrees in turn with theories proposed 

1 2 4 by Flory and others , that the exponent should be universal , 

independent of the details of the excluded volume interaction 

and are the same for lattice and continuum systems. 

On the other hand 1 dynamical calculation of lattice models 

have not shown the same kind of agreement with theoretical 

predictions.
5 

The models used have subsequently been criticised6 

on the grounds that a lattice cannot faithfully represent the 

dynamics of a real polymer in which small bending and stretching 

motions may be important. 
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We therefore decided to·carry out direct simulations of 

the dynamics of such a model chain with excluded volume in a 

heat bath representing a solvent. For the sake of simplicity 

and tractability we have neglected in this study the hydrodynamic 

interactions between different parts of the polymer. This 

interaction does not have any effect on the equilibrium 

properties of the chain and its effect on the kinetics 1 while 

very important, is separable, in principle, from the effects of 

7 8 9 the excluded volume we shall study here. ' ' 

Since the appearance of our earlier report 3 additional 

computer studies of continuous polymer chains, dealing primarily 

10 11 with equilibrium properties have appeared. ' There has also 

. 12 
been a new study by Kranbuehl and Verdier of the kinetics of 

chains with excluded volume on a lattice in which additional 

degrees of mobility were permitted. This brought their 

relaxation times for N < 50, into agreement with our values but 

still left the relaxation times for larger chains slower than 

ours. It is our belief that this is again due to the limited 

repetoire of steps available on the lattice. We shall show, 

that when time is consistently defined in the two models, their 

results agree with ours, even for large chains. 
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of Model 

For our present investigation we have chosen the rbead-

spring' model to represent the polymer chain. The chain contains 

N beads with coordinates R ={ r. : 1 < i < N}. Successive beads 
l. 

are connected by harmonic springs. A repulsive, short range, 

excluded volume interaction ~(r) acts between all pairs of beads, 

The total potential energy of the chain is: 

U(R) = (2 .1) 

A repulsive Lennard-Janes 6-12 potential was chosen to represent 

the excluded volume interaction: 

~ (r) "' { 4o 

0 

[ (cr/r) :
2 
>- (cr/~) 6 

rc 

+ 1/4] r < r c 

( 2 • 2) 

where r = 21/ 6 o. This potential is continuous and has a continuous 
c 

rst derivative, but is stiff enough for small r that the effective 

excluded volume depends only weakly on s . On the other hand 

0 d h d 1 11 13 • t s = 0 or o = correspon s to t e Rouse mo e , 1.e. o 

an ideal chain. 

The energy U(R) in (2.1) is to be thought of as modeling 

the effective, purely repulsive 1 interactions between polymer 

1 2 segments in a good solvent. ' 

The equilibrium distribution of a chain in such a solvent is 

Z~l exp[~SU(R)], with B a parameter playing the role of are~ 

ciprocal temperature. The essential feature of universality is 
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that many properties of the chain are, for large N,. independent 

of the details of U{R). 

We have chosen our units of length to be cr and let BK = 2 

and 6£ = 0.1. With these parameters the average bead separation 

in equilibrium is 1.45. While it is possible for two sections of 

the chain to crossosuch events are very unlikely and presumably 

do not affect the results significantly. 

7 13 
Following the work of Kirkwood and Rouse ' we assume that 

the velocity of the polymer is proportional to the forces acting 

on it at any time; this is the high viscosity limit in which 

inertial terms are neglected. Neglecting also hydrodynamic forces 

we then have the velocity of the jth bead at time t, 

V. ( t) = ~ 6 D \1. U ( R) + W. (t) 
~J -J -J 

(2. 3) 

Here 6 is the reciprocal temperature of the solvent, D is the 

diffusion constant of a monomer, W is a Gaussian fluctuating 

"Langevin force" (due to the solvent) with mean <W. (t)> = 0, 
~J 

and covariance <Wi(t
1

) Wj(t 2 )> = 6Do(t
1
-t 2 )oij. Eq. (2.3) 

. . 14 f leads to the Smoluchowskl equatlon for the time evolution o the 

polymer probability density f(R,t), 

()f 
~ (R,t) = D I IJ . [ IJ . f ( R I t ) + f3 f ( R f t ) IJ . u ( R) J 

j=l ~J ~J ~J 
( 2. 4) 
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The solution of (2 4) approaches equilibrium as t + oo; 

f(R,t)+Z [exp ~(3U(R)] , • 5) 

3. Computational Method 

The stochastic process described by (2.3) (or equivalently 

the solution of the diffusion equation (2.4)) was simulated by a 

novel Monte Carlo scheme. 

A simple simulation method would be to displace every 

particle at each time step by an amount proportional to the sum 

of the internal force and the random force. That is: 

r . ( t +T) = r ( t) - 't (3 D IJ . U + X . 
~1 ~1 1 

(3 '1) 

where <x. x.> = 6DT. This method is not useful in the presence 
1 J 

of strong excluded volume forces since if an overlap occurs 

C1r.-r.! is small for some pair ij) the internal force on particles 
~1 ~J 

i and j in the next time step will be very large and they could 

be thrown far from the polymer. The time step T would have to be 

exceedingly small to alleviate this problem. A systematic way is 

needed of rejecting those moves where the potential energy increases 

significantly. 

To achieve this goal, let us first define the Green's 

function for the process: G(R ,R,t) is the probability density for 
0 

the polymer to diffuse from the point R
0 

to the point R (R
0 

and R 

are vectors in the 3N dimensional configuration space) in time t. 

In other words G is the solution of eq. (2.4) with boundary 
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conditions; 

G (R , R, 0) = o (R ..- R 1 
0 0 

._2) 

Knowledge of the Green 1 s functions for time T is sufficient 

simulate the diffusion process in steps of T since: 

f (.R, t + T) = J dR 
0 

An approximation, exact if fu is constant, is 

G (R ,R,T) 
0 0 

-3N/2 [ 
= (2TITD) exp ~ 

CR - R0 + T DV U (R0 } l 
2 J 

4 DT 
(3. 4) 

Variation of iju in ( 3. 4) may lead to unph)rsical overlaps which 

can be avoided if G is altered to satisfy the detailed balance 
0 

condition obeyed by the exact Green's function, 

(3.5) 

In our simulation gorithm, we use the standard Metropolis15 

rejection technique 1 more familiar with equilibrium simulations 

but equally applicable here, to enforce (3.5). Our simulation 

reads: 

1} Start from a configuration R = C::;1 , .•• 1 :N). Permute the 

integers randomly. This permutation kept fixed until all 

particles have been moved once. 
I 

2) Sample a new postion r. for particle i from equation 
-1. 

.1) where only xi is nonzero. 

3) Accept this move with probability q(R,R') where: 
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q(R,R 1
) (3.6) 

This acceptance probability is constructed so that the 

transition probability density, q(R 9 Re1G 0 (R,R' ,T} satisfies 

detailed balance condition.·· This assures that f (R,t) 

obtained from the simulation satisfies (2.5). 

4) · If the move is accepted, the coordinates of that particle, 

are replaced by their 

values are retained. 

new values, viz.r!. 
,l. 

If not the old 

5) Steps ll through 4} are performed for each particle in the 

succ~ssion given by the random permutation. Time is advanced 

by an amount T after each particle has had a trial move. 

Because time advances whether or not the particle move is 

accepted, all diffusion processes will be slowed down by an amount 

proportional to the rejection ratio. In our simulations the time 

step T is kept small enough so that the rejection ratio is about 

10%. With this time step it is reasonable to assume that all slow 

diffusive motions will be slowed down by the same factor. We can 

determine this scale factor since the diffusion of the center of mass 

can be calculated exactly from the _Smoluchowski equation. It is 

given by 

where z ~-
1 
N 

N 

I 
i=l~ 

( 3. 7) 

is the center of mass. ForT = 0.01 the 



rejection varied from 8.5% at N = 5 to 11.2% at N = 63. 

The slowing down of .the center of mass varied from 6% at N = 5 

to 7% at N = 63. All times reported below and shown in the figures 

have been scaled by this amount (0.94). 

The computations of the force and potenti are done ef ciently 

with the use of near neighbor tables. At the start of the calculation 

a st of all the pairs iJ' with I r. -r. I < r + 2t:,· is constructed. /::, is a 
-~ -J c 

constant which may be chosen to minimize the computer time required. 

Only distances for pairs in this list need be computed. The list 

is renewed when maxfr. (t 1
) ~ r. (t)] 2 > 6 • Because the excluded 

~~ -~ 

volume potential keeps the polymer stretched out and because diffusion 

times are slow this neighbor scheme is very efficient for large 

polymers. However, as we shall see, all the diffusion times scale 

as N2 · 2 and since the computation effort per move increases as N, 

the computer time needed to simulate a fixed number of relaxation 

times is proportion.al to N3 • 2 • This limi the size of polymers 

which can be simulated by this scheme on present computers to 

approximately 100. 

It is possible to generalize the above method to include a 

hydrodynamical interaction matrix {the Oseen tensor) . Then the 

random forces in equation (3.1) would become correlated~6 This 

increases the computational effort considerably and has only been 

attempted for small chains (N = 10). Those results will not be 

reported here. 

4. Static P es of a S 

In this section we present various static properties of an 
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isolated polymer chain emphasizing the various ways in which the 

scaling behavior of lengths manifests itself. We assume implicitly 

that there exists a well defined limiting behavior for very large 

lymers and that chains of finite length approximate this behavior 

when N is sufficiently large l, 2 

4.1· Size· 

The customary way of demonstrating the scaling behavior of 

polymers is to plot the mean squared end to end distance versus 

the number of units in the polymer chain. Such a plot is shown 

in gure 1 polymers with N = 5 to N = 63. We have fitted 

these numbers with a simple power law and find: 

(4.1) 

where a 2 = 2.1 is mean square link leng.th in our units. 

The radius of gyration is also plotted in figure 1 and obeys 

a similar relationship: 

( 4 • 2) 

where £ is the center of mass of the chain. A more detai d 

analysis of computer results on a model chain with fixed links 

of length a, and excluded volume interaction of the same form as 

. lOb 
ours, was made by Webman et al. By taking explicitly into 

account the finite N corrections to the asymptotic power law 

they obtained: 



2 ;., 2 ~ 
Shown in Figure 2a are the mean values of <R .. >- = <(r.-r.) > 2 

l.J .. ~1. ~J 

against (i + j)/N, the chemical center of the pair. The lines connect 

points of constant j; they are lines of constant chemical distance. 

The tip of the tree represents the end to end distance squared and 

the base the nearest neighbor distances. The approximately constant 

2 value of <R .. > along the lines is a clear indication that the mean 
l.J 

distance between two polymer beads is primarily a function of the 

chemical distance and independent of the placement of the beads 

within the chain. The slight bending of the branches halfway up 

the tree indicates that there are edge effects of the order of a 

few percent. The end of the polymer chain is typically surrounded 

by fewer polymer beads; thus it feels a smaller excluded volume force, 

and it has more freedom to bend than would a bead in the center of 

the chain. Also plotted in Figures 
. n 1/n 2b,c 1 d are <R .. > for 

l.J 

n = ~ 1 1 4,6. Note that these graphs show the same behavior as n = 2. 

This indicates that the distribution of the R .. 'sis a universal 
l.J 

function of R .. /<R~. > ~ for long chains. Ne have checked the behavior 
l.J l.J . . . 

of this tree as N changes and found that in appropriate reduced 

units, it has the same shape; we have not studied the effect of 

different potentials as a direct observation of universal behavior 

lOb (see however Webman et al and references therein) . 

4.2 Characterist~c· Shape 

The average shape of a chain is another quantity which should 

independent of the size of the chain. The simplest information 

about the shape is contained in the moment of inertia tensor defined 

by 

(r.-Z) ( 
~1. ~ a -Z) > 

~ b a,b = 1,2,3 (4.3) 



The eigenvalues this tensor, T~, are measures of the instantaneous 
l, 

width of the polymer. in the three orthogonal principle axes, ordered 

so that Tf < T; < Note that the sum the three eigenvalues 

equals the radius of gyration. The average values of T~/G2 ,for , and 
l, 

2 are given in Table 1. Note that they are independent of the number 

of ads and in fact are almost identical with the equivalent ratios 

found in computer simulations of the self avoiding random walk on 

a lattice. 17 These results indi that the polymer is typically 

shaped like a highly elogated ellipsoid of inertia with·the average 

princip axes being in the ratio of 1:1.8:4.0. For the non~se1f-

avoiding random walk the corresponding ratios are 1:1.64:3.42. 

4 • 3- ·correl:a,tioorr 'f.urrctions· · 

The two particle correlation function defined as, 

( 4' 4) 

co,1tains a wealth of information about the static properties of 

poymers. For example, the nth·moment of this probability density is 

just <R~.> defined above. As indicated earlier the approximate 
l..J 

scaling behavior of the moments implies that this function should 

scale as 

A 

g .. (r) 
l.J 

-3 A 

:::; <R . . > g (r/<R .. >) 
l..J l.J 

( 4. 5} 

where g(x} is a universal function independent of i,j,and N. We 

have computed this scaled function using the configurations from 

our simulations. In order to increase the statistical accuracy we 

have averaged over all pairs with constant chemical distance 1 li~jl. 



Define: 

g trl 
m I (4.6) 

3 Plotted in figure 3 is Q.n(Rm gm(r}} versus the scaled squared 

distance r 2/<R~> for a 63 bead chain. The Gaussian chain appears as 

a straight line in this plot. There are small but significant 

changes with m, but all of the distribution functions show large 

non~Gaussian effects for both large and small distances. 

The scaling behavior at small r has been calculated by des 

Cloizeaux 18 for an infinitely long excluded volume chain using re-

normalization group techniques. He finds that 

e .. 
( l.J g .. r) et:. r l.J . r<< <R .. > 

l.J 
( 4. 7) 

The exponent e .. depends on the placement of i and j in the chain. 
l.J . . 

If the results of the renormalization calculation apply to our 

bead chain then the scaling relationship (4.5) may not be correct at 

small r. For three limiting possibilities the predicted exponents 

are: 

e ~ e = lJ 

± 0.004 

± 0.003 

± 0.05 

0 j = N 

O=i< j<< N ( 4. 8} 

o« i < j << N 

Figure 4 is a log~log plot of the short distance behavior of 

gm(r) for several values of m. We find that each gm has an exponent 

of about 0.25. This is particularly evident as m ~ N. Since we are 
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averaging over pairs with cons chemical distance, the exponent 

11 tend to be that given by the minimuQ of the exponents of the 

d5fferent pairs which according to eqe (4.8) is that ass ated with 

pairs one of whose members is near the end. There no evidence 

however in our data of the much larger exponents in eq. (4.8). 

A more extensive Monte Carlo calculation involving much r chains 

would be useful. 

The large r behavior of the end to end distribution on the 

1 by Dombl9 t 1 F' h 20 lattice has been examined using Monte car o e a ., lS er, 

M · d 21 d d 1 · lSa h t d 1' cKenzle an Moore1 an es C Olseax ave presen e sea lng 

arguments for the following form 

2 ;k = <R >2 ON 

(.4. 91 
Our results are not precise enough to check Eq. (4.9) quantitatively 

but they do exhibit a significant deviation from a gaussian (cf.fig(3)). 

They also indicate that whatever scaling law does apply will describe 

near as well as distant bead pairs. A recent study lOc of strongly 

stretched continuum chains showed asymptotic behavior for large 

r/~ as in Eq.(4.9) with an exponent of about 2.5. 

The structure or scattering function is the Fourier transform 

of the total pair correlation function g(r1 

1 N ik•r 1 2 
SN(k} = <-1 I e- -j 1 > 

N j =1 

-1 \ = N L q . . (r) 
i<j lJ 

(4.10} 

Shown in Figure 5 is S(k) versus Q = kN°· 6 for various values of N. 

It is seen that there is a universal behavior for 1/k greater than a 

bond distance. The S(k) - k- 5/ 3 behavior for Q > 2 is in accord 

•. 1 Ed d22.23 d' . f () -4/3 0 6 Wl~l war s · pre lCtlon o g r - r for r - N · 
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5. Dynaptic Pro12.erties 

In this section we present various time dependent 

of the single polymer chain. We find that these properties have 

a scaling behavior in time. That 1 the times involved in various 

large scale· motion of the polymer are independent of the number of 

monomers when properly scaled. The scaling factor can be easily 

determined since the diffusion of the center of mass qualifies 

as a large scale motion. Let tG be the time it takes for the center 

of mass to diffuse an amount equal to the radius of gyration. From 

equations (3.7) and (4.2) this will equal: 

( 5. 1) 

To observe universal behavior we must express all times in terms of 

Time dependant properties are commonly described in terms of 

correlation functions. If H(t) = H(R(t}) is some function of the 

polymer chain configuration R(t) then define: 

C(t;H} "" ( 5. 2) 

The averages are over an equilibrium distribution of initial 

values R(t 0) . This is represented in our simulations as an average 

over t 0 of one or several independent runs. The scaling behavior 

of the kinetics then requires that if H(R) measures a global property 



polymer then for large N, C(tNa,HN) should be independent of 

N where a a uni ve.rsal exponent. 

In our earl note3 we d results for the autocorrelation 

functions of the end to end vector, the eigenvalues of the mass 

tensoru the radius of gyra~ion and the intermediate scattering 

function. we wish to compare those results with some recent 

work by Kranbuehland Verdier12 on a dynamical lattice model, and 

then to present new results on the viscosity of the polymer 

chain and the relative motions of beads in the chain. 

5.1 Kinetic Scali Lattice Models 

As noted in ref. 3, we assumed the validity of scaling and 

then calculated, with a nonlinear least squares procedure, the best 

value for the scaling exponent a (see Appendix.A). Using the ten 

autocorrelation functions examined and chain lengths ranging from 

5 to 63 we then obtained 2.04<a<2.24 with a typical statistical 

error of 0.04. We believe that the difference between the values 

of a as given by the least squares fit are due primarily to the 

small chain lengths in our simulations and that a is indeed 

universal and close to 2v + 1. 

This result 1 while in satisfying agreement with various theoretical 

computations disagreed strongly with the results given in ref.S on 

the time evolution of a lattice model of a polymer chain with 

excluded volume in which the relaxation time appeared to increase 

much faster with N. (Note that in the absence of any excluded 

volu~e both lattice and continuum models show behavior in which 

time scales as N2 ) . 
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Following our work,Kranbuehl and Verdier1~arried out new 

simulations of a dynamical lattice model. Unlike earlier work in 

which the configuration of the lattice polymer could change by 

either one or two bead moves alone, the new simulations permitted 

at any step either one or two bead moves with the relative fraction 

of two bead moves equal to p. Although this mixture of moves does 

indeed allow the excluded volume chain to relax much quicker than 

with just one type of move, their data for the largest values of 

N(63 beads) still appear to show a slowing down of the relaxation 

times by a factor of N, which is similar to that found with the 

more restricted lattice dynamics. 

Given this situation, it seems worthwhile to find ways of making 

direct comparisons between the lattice model and our model. This 

requires in particular that we have a consistent time scale in 

both models. To do this we note that in continuous space, without 

hydrodynamical interactions, the diffusion constant is independent 

the internal potential energy, while in the lattice model it may 

depend both on the potential and on the dynamical rules (e.g. upon 

the value of p). We therefore propose that the unit of time in the 

two models be defined as the number of computer cycles needed for 

the mean squared displacement of the center of mass to equal a fixed 

multiple 1 say 6, of the mean squared end to end distance. There 

are sufficient data given in ref.l2 to determine t 2 ,N,the half time 

of the correlation function for the end to end vector defined as 

(5.3) 



· Assuming that only one exponen ti:al has survived in 

correlation function we find that for lattice model in the units 

of time defined above this half time is: 

L 
'1:' 2 ,N (5.4) 

N,T , and D N are defined in ref.l2. For our model , p p g 

s half time will be given by 

c 
T2,N 

These quantities are plotted in Figure 6 

( 5. 5) 

the two models. 

The most important feature to note is that these two quite different 

models give roughly the same ratio (about 30 to 50) of rotational 

relaxation to diffusional motion. Secondly, for our model and for 

the lattice model with 3 different values of p this ratio of times 

for large N appears to be constant although we cannot be too certain 

of this, given the rather large error bars on the present calculation. 

Viewed from this perspective, the lattice model computations are not 

as inconsistent with the generally accepted scaling behavior of time 

dependent polymer properties as they seem . It would be useful to 

ck further this question of scaling. This can be done in our 

mo by simply increasing the length of the simulation. For the 

ce model a variety of correlation functions should be examined 

to see the situation of figure 6 obtains for all such functions. 



We computed the autocorrelation ~unction of the stress 

tensor J xy I Fourier transform gives the increase in the linear 

response to a wave of the chain plus solvent over the response 

of the pure solvent, i.e., the intrinsic viscosity. 8 

fn (w)] =<J >/N dt e-iw t ( ) 2 Joo 
xy 0 C t;Jxy 

N 
= I 

i=O 
x. 

l. 

au 
ayi 

( 5. 6) 

Shown in Figure 7 are log~log plots of C for various values of N. 

In the Rouse model one can show that 
13 ~ 24 

lim c (t;J ) 
-at I

0 
cat) :::: e 

N+oo 
xy 

1 + O(t-3/2) ( 5. 7) = 
/l61rt 

I
0 

is a modified Bessel function. Our data for the excluded 

volume chains appears to show the same t-l/
2 

dependence for times 

less than the slowest relaxation modes of a finite chain and an 

exponential decay for larger times. 

There exists a sum rule relating the static or zero-frequency 

f t . 8 1 viscosity to the radius o gyra 1.on, name y 

ln(O)] = <J 2>/N xy J
00

0
dt C(t;J } - G

2
/6 xy 

{ 5. 8) 
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The relevant numbers are given in Table II. It is seen that there 

is agreement to within 40%. It should be noted that the calculation 

the integral in (5.8) is difficult from computer simulations 

since only a single number is obtained from each configuration and 

that number· fluctuates greatly as the system evolves. 

5.2 Relative Motions of 

Finally, we have calculated the autocorrelation functions 

describing how a single bead moves with respect to the center of 

mass and how pairs of beads move, i.e. ( t; r.- Z) and C ( t; r. - r . ) . 
-l - -l ~J 

Shown in figure 8 and 9 are autocorrelations of these functions 

a chain of length 20. Consider the first of these, namely 

C -Z). It should decay in a time characteristic of the time 

it takes the ith particle to diffuse around the center of mass. 

Particles near the center of the chain are of course located nearer 

to the center of mass as shown by the function <(r.-z) 2> plotted 
-l -

in figure 8. The half time and integral of C(t;r.-Z) do show a 
-l -

deep minimum at the middle of the chain. However near the ends 

of the chain the situation is quite different. The ends appear 

to be much more mobile than beads located in the interior of the 

chain. One can detect a region of the chain, comprising about 15% 

of each end of the polymer, where the diffusion time about the 

center of mass decreases as the distances to the center of mass 

increases. The ratio of the half time to the integral of the 

correlation function expresses how nearly exponential is the decay 

of the correlation function. Near the ends this ratio equals 

(within statis cal errors) the exponential value [ln(2)] but it 



lower near the middle of the chain. We interpret this to 

mean that the motion at the end of the chain has a single slow 

cha.racteristic time scale* Near the center, in addition to this 

slow mode which will always dominate at long times, the motion 

is complicated by other, faster modes associated with motions about 

the center of mass. In Figure 9 is shown C(t;r.-r.) for N = 20. 
~J. ovJ 

The lines connect points of constant i - j. Thus this figure is 

the dynamical analogue of figure 2. Although edge effects are 

not very important for static correlation functions, dynamically 

they are much more important, correlation times decreasing by a 

factor of two if the pair of particles happen to be located near 

the ends. 
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Appendix A Calculation of the Scal1ng Exponent 

. In this appendix we give in detail the procedure we have used 

culating the scaling exponent, a, which brings several 

time dependent correlation functions into agreement. With the 

trajectory generated by the simulation we calculate the correlation 

function C(t;HN) of some property H for several values of N, using 

equation (5. 2.} .,The averages are taken over the entire length of the 

trajectory. This correlation function will depend upon the initial 

conditions and will fluctuate from run to run because of the finite 

time avail le for computing the average. zwanzig and Ailawadi
25 

have 

proposed that the vari nee of the estimate of the correlation function 

has the following form: 

4T (l-<C>)2 
T 

(A.l} 

where T = J: dt C(t;HN)
2 

and Tis the length of the trajectory. 

Our data verify their prediction within a factor of two. 

Let us assume that the scaling hypothesis is valid, namely that 

exists an a such that C(sNa;HN) is independent of N as a 

function of scaled time s. Then the linear combination 

/') 

C(s,a} = 
Iw(t,N)C(sNa;HN) 
N 

l w(t,N) 
N 

(A. 2) 

will equal the scaled correlation function. To minimize the variance 
A 

of the estimate of C(s,a), the weights w(t,N) must be chosen so 

that each term in the linear combination contributes an equal variance. 

This implies: 
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w(t,Nl = 1/V(tuN} (A.3) 

The success of the scaling hypothesis can then be judged by the 

s~uared dif~erence between the scaled averaged function and the 

original data: 

2 -1 
X (a} = s 0 

(A.4) 

2 The best scaling exponent is that which minimizes x (a) . In the 

integral in equation (A.4) we have chosen s 0 to be such that for 

a 2 a at least two values of N, C(sN ;HN} >V(sN ,N), i.e. the signal is 

greater than the noise. 

The advantages of the above procedure are that it make no 
A 

assumptions about the form of C(s), that all of the available data 

is used with the proper statistical weight, and that the procedure 

is stable (i.e., a minimum in x2 Ca} is ensured). 
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Table 1 

N T 2 <G2> <T2>/<G2> <T2>/<G2> <RlN> 1 2 

5 Sx10 3 10.35±0.05 1.929±0.012 0.037 0.166 

10 5x10 3 27.8 ±0.03 4.65 ±0.04 0.051 0.159 

20 7.5x10 3 70±4 11.p±o.5 0.053 0.157 

33 104 125±6 19.9±0.6 0.054 0.162 

48 llx1 o4 197±14 31±1.5 0.057 0.176 

63 8x10 3 321 ±4 0 48.6±5 0.050 0.157 

Static properties of our model. N is the number of beads. T is the 

2 
total simulation time (in units of 0 /D) 9 RlN is the end-to-end distance, 

2 2 
G is the radius of gyration, and T

1 
and T

2 
are the smallest and second 

eigenvalues of the moment of inertia tensor. 
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Table II 

A 

G2 /6 <(VU) 2> <\72U> 2> N [n(o)] <J 'r 
xy m 

5 0.36 0.322 43.4 44.8 30 6 

10 1.4 0,77 54.1 .53.0 71 12 

20 2.5 1, 83 57.8 56.0 152 32 

33 3.0 3.2 56.7 57.1 246 60 . 
48 7.8 5,2 58.5 57,6 371 151 

A 

The excess viscosity [n(O)] as a function.N, the number of beads per 

chain. 
A 

The relationship (equation 5,8) asserts that [n(O)] should 

equal /6. The agreement with our data is good only to about 

40%, probably because of the large fluctuations in J and because 
xy 

of the difficulty in performing the time integral. To check our program 

2 2 
we have calculated <(VU) > and <\7 U> which must be equal if averaged 

over the Boltzman distribution. Also shown is <J 2 > and -r , the upper 
xy m 

limit used in the time integral in eq. 5.8. 
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Figure 3: 

26 

The mean squared end-to-end distance (dashed line) 

and the mean radius of gyration (solid line) versus 

the number of particles. 

The average values of four moments of R .. versus the 
~J 

relative distance, x, from the center of the chain 

for a chain with 20 beads where x = (i+j-21)/19. 

The lines connect points of constant chemical distance 

(i - j = constant}. The vertical axis is in units 

M 1/M of <R1 , 20 > .Hence the bottom of the tree represents 

moments of adjacent beads. 

The logarithm of the pair distribution function for 

beads i and j on a chain with 63 beads, as a function 

2 2 2 r /r* where r* 
2 = <R .. >. The distributions are 
~J 

averaged over all i and j that satisfy i - j = m 

where m = 5 for ; m = 10 for -----; and m = 40 

for (-~ • ~- the straight line(~~~---) is the 

corresponding curve for the ideal chain (no excluded 

volume interaction) . 
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The probability distribution log gij(r) versus 

log (r/r*) 2 for small r. The distribution are 

averaged over all i and j such that i - j = m 

for a chain consisting of 48 beads. Three values 

of m are shown (5 1 20 and 40) which are represented 

by (0, 

g(r) = 
1 + ) respectively. 

1/4 a r • 

The line is the curve 

-v SN (k} versus q where q = kN and v = 0. 6. The 

symbols represent the results of six different 

values of N (see right-hand scale) . The line is 

0.3Q-S/3 . For large k, S(k}+l/N. It is seen that 

for k<2 the curves coincide. 

The ratio of the half time of the correlation 

function of the end-to-end vector to the mean 

time for the center of mass to diffuse a distance 

equal to the radius of gyration as a function of 

the number of beads. The present calculation is shown 

as (I) and the dynamical lattice simulation (re£.12) 

wit~ 3 values of p, (1.0, 0.5, 0.0) represented 

by (A,O, ) respectively. pis the fraction of 

two !.·ad moves in the lattice model 
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